Как пользоваться мегаомметром: измерение, подключение, видео
Содержание:
- Причины нарушения изоляции
- Виды
- Мегаомметр
- Инструкция по эксплуатации
- Измерение изоляции на линиях
- Обмотка электродвигателя: лучшие схемы соединения и подключения. Инструкция как сделать и прозвонить обмотку своими руками
- ТРЕБОВАНИЯ ОХРАНЫ ТРУДА ВО ВРЕМЯ РАБОТЫ
- Как замерить сопротивление изоляции мегаомметром ЭСО
- На что обращать внимание при работах с мегаометром
Причины нарушения изоляции
Во-первых, сам изоляционный материал может быть недостаточно качественным. В нем могут присутствовать инородные включения, что ухудшает изоляционные свойства и снижает сопротивление. Во-вторых, любой материал со временем поглощает влагу и воздух, что также может сказываться на качестве и долговечности покрытия. И, в конце концов, своё влияние может оказывать постоянное высокое напряжение, воздействующее на диэлектрик.
Мегаомметр окажет вам незаменимую помощь, когда понадобится продиагностировать изоляционный материал на предмет повреждений и снижения сопротивления. Вы сможете найти причину проблемы и успешно отремонтировать или заменить поврежденный участок
Важно делать всё своевременно, поскольку в ином случае могут возникнуть крайне негативные, а порой даже трагические последствия
У каждого элемента электросети есть свой срок технического обслуживания. Электропроводку рекомендуется проверять раз в 1-1,5 года, чтобы заблаговременно узнать о проблеме
Особенное внимание нужно уделять электрическим машинам (двигатели. генераторы)
Своевременное ТО продлит срок службы и сэкономит средства на капитальный ремонт.
Для этого можно обратиться к специалистам, которые продиагностируют ваш мегаомметр на предмет разнообразных повреждений или неисправностей, которые обязательно будут устранены в кратчайшие сроки. Ответственные ремонтные фирмы не станут браться за починку оборудования, не подлежащего восстановлению.
Надеюсь, эта статья на нашем сайте была вам полезной!
Виды
Стрелочный (электромеханический или электромагнитный) омметр содержит электроизмерительную головку, или гальванометр. Тот, в свою очередь, является показывающим индикатором замеряемого сопротивления. К нему полагается минимальный набор навесных элементов (резисторы и переключатель). Один из резисторов – переменный, он выставляет условный ноль перед началом измерений. В состав цифрового прибора входят датчики тока, аналого-цифровой преобразователь (АЦП), микропроцессор, оперативная память, аналог ПЗУ на основе флеш-памяти (или перепрограммируемая микросхема) и проводной/беспроводной интерфейс для подключения к локальной компьютерной сети. Электронные схемы надёжно заизолированы и заземлены от цепи-замерителя в самом приборе. Калибровка нуля измерений «цифровику» не нужна.
Современные мультиметры позволяют измерить сопротивление до 200 МОм, что, по идее, делает их полноценными мегаомметрами. Из-за отсутствия источника повышенного напряжения (используется 9-вольтовая батарейка) их погрешность достигает нескольких процентов. Это не позволяет применять низковольтные мегаомметры в серьёзных электроцепях и сложной электронике, где люди имеют дело с тысячами вольт. Цифровые мегаомметры с малой погрешностью – чаще всего лабораторные стационарные приборы, достигающие размеров осциллографа старого поколения с электронно-лучевой трубкой, или 10-15 ноутбуков с диагональю экрана в 15 дюймов, поставленных друг на друга в закрытом состоянии.
Мегаомметр
Мегаомметр — что это такое
Мегаомметр — это специальный прибор, который используют профессиональные электрики для измерения сопротивлений обмотки электросетей и электроприборов. Отличие мегаомметра от омметра состоит в том, что мегаомметр измеряет большие значения сопротивления на высоком напряжении. Напряжение для проверки сопротивления мегаомметр генерирует самостоятельно с помощью встроенного механического генератора или батарей. Величина напряжения составляет от 100 до 2500 вольт и устанавливается по значениям 100, 500, 700, 1000 и 2500 вольт.
По внешнему виду магаомметр представляет из себя прямоугольную коробочку с аналоговой шкалой с делениями в два ряда и стрелкой, которая указывает показания сопротивления при измерении изоляции. С боку располагается ручка динамо машины, раскручивая которую, вырабатывается постоянное напряжение, с помощью которого и измеряется сопротивление изоляции на измеряемом участке.
Но это мы описали внешний вид аналогового мегаомметра, современные измерители сопротивления изоляций имеют меньшие габариты, не имеют динамо машины, вместо нее батарейки или даже подключается питание от сети. Вместо аналогового датчика со стрелкой используется цифровое табло, а также есть память на некоторые прошлые циклы измерений.
Для чего нужен мегаомметр
Мегаоммерт используют для выявления повреждений в изоляции электросетей перед вводом в эксплуатацию, так же при выявлении мест уже появившихся аварийных ситуациях. Для проверки изоляции кабеля в трансформаторах, электродвигателях и любых других устройств, которые имеют электрическую обмотку с изоляцией. Основное использование мегаомметра – это измерение изоляции кабелей или другими словами, измерение сопротивления изоляции кабеля.
Испытания изоляции кабелей мегаомметром могут выявить слабые места в электросетях, как электропроводке зданий, так и в электродвигателях. Показатели, которые снимают мегаомметром, используют для определения степени изношенности изоляций, что может предотвратить неожиданные и нежелательные случаи короткого замыкания. А короткое замыкание происходит при механическом повреждении или при старении изоляции, когда токопроводящие жилы соприкасаются между собой.
Принцип работы мегаомметра
Мегаомметр работает по принципу вырабатывания различного напряжения, которое подается на испытуемый участок электросети для проверки сопротивления изоляции кабеля. В зависимости от номинальной нагрузки измеряемого прибора или электрического кабеля используют соответствующее напряжение. Перед испытанием подбирается подходящий мегаомметр, например, если нужно проверить бытовые приборы или проводку в квартире, то используется мегаомметр с напряжением не больше 250В.
Если простыми словами, то мегаомметрт подает постоянное напряжение на участок кабеля, который мы проверяем на наличие нормальной изоляции. Фиксируются показатели утечки напряжения и на основании этих показателей делаются выводы относительно нормы показателя изоляции испытуемого кабеля. Если утечка больше нормы, то считается, что изоляция повреждена и имеет место быть короткому замыканию. Что недопустимо при нормальной эксплуатации электрических сетей, т.к. чревато возгоранием кабелей, если не сработает автоматика отключения контактов при коротком замыкании кабелей.
Какие бывают мегаомметры
Название модели | Диапазон измерения сопротивления | Измерительное напряжение | Масса прибора | Габаритные размеры |
ЦС0202-1, ЦС0202-2 | от 200 кОм до 100 ГОм | от 100 В до 2500 В | до 1 кг. | 220х156х61 мм. |
ЭС0210, ЭС0210-Г | от 0 кОм до 100 ГОм | от 0 В до 600 В | до 1,9 кг. | 155х141х201 мм. |
ЭС0202/1-Г, ЭС0202/2-Г | от 0 кОм до 10 ГОм | от 100 В до 2500 В | до 2,2 кг. | 210х150х230 мм. |
Мегаомметры отличаются внешним исполнением и внутренним устройством. Аналоговые измерители сопротивления кабелей имеют динамо машину, которая, путем вращения за специальную ручку, вырабатывает постоянное напряжение, которым производятся замеры изоляции. Так же имеется аналоговое табло с делениями по двум шкалам и механическая стрелка, которая указывает на показатели. Более современные мегаомметры вместо динамо машины имеют элементы питания: аккумуляторные батареи или непосредственный блок питания. Есть цифровое табло, отображающее снимаемые показатели изоляции и память, которая хранит данные прошлых измерений.
У каждого мегаомметра есть свои плюсы и свои минусы, аналоговый больше по размерам и тяжелее, по сравнению с цифровым, но цифровой имеет прямую зависимость от элементов питания, когда аналоговый готов всегда к работе. Но выбор, каким мегаомметром пользоваться, всегда остается за вами.
{SOURCE}
Инструкция по эксплуатации
Проверка сопротивления изоляции производится на обесточенном оборудовании или кабельной линии, электропроводке. Помните о том, что устройство генерирует высокое напряжение и при нарушении мер безопасности по использованию мегаомметра возможен электротравматизм, т.к. замер изоляции конденсатора или кабельной линии большой протяженности может стать причиной накопления опасного заряда. Поэтому испытание производится бригадой из двух человек, имеющих представление об опасности электрического тока и получивших допуск по ТБ. Во время испытания объекта, рядом не должны находиться посторонние лица. Помним про высокое напряжение.
Прибор при каждом использовании осматривается на целостность, на отсутствие сколов и поврежденной изоляции на измерительных щупах. Производится пробное тестирование путем испытания с разведенными щупами и замкнутыми. Если испытания производят механическим устройством, то нужно разместить его на горизонтальной ровной поверхности, чтобы не было погрешности в измерениях. При измерении сопротивления изоляции мегаомметром старого образца нужно вращать ручку генератора с постоянной частотой, примерно 120-140 оборотов в минуту.
Если измерять сопротивление относительно корпуса или земли, задействуют два щупа. Когда производят испытание жил кабеля относительно друг друга, нужно использовать клемму «Э» мегаомметра и экран кабеля чтобы компенсировать токи утечки.
Сопротивление изоляции не имеет постоянного значения и во многом зависит от внешних факторов, поэтому может варьировать во время измерения. Проверку производят минимум 60 секунд, начиная с 15 секунды фиксируют показания.
Для бытовых сетей испытания производятся напряжением 500 вольт. Промышленные сети и устройства испытываются напряжением в диапазоне 1000-2000 вольт. Каким именно пределом измерений пользоваться, нужно узнать в инструкции по эксплуатации. Минимально допустимое значение сопротивления для сетей до 1000 вольт — 0.5 МОм. Для промышленных устройств не меньше — 1МОм.
Что касается самой технологии измерения, использовать мегаомметр нужно по описанной ниже методике. Для примера мы взяли ситуацию с замером изоляции в ЩС (щит силовой). Итак, порядок действий следующий:
Выводим людей из проверяемой части электроустановки. Предупреждаем об опасности, вывешиваем предупредительные плакаты.
Снимаем напряжение, обесточиваем полностью щит, вводной кабель, принимаем меры от ошибочной подачи напряжения. Вывешиваем плакат — НЕ ВКЛЮЧАТЬ, РАБОТАЮТ ЛЮДИ.
Проверяем отсутствие напряжения. Предварительно заземлив выводы испытуемого объекта, устанавливаем измерительные щупы, как показано на схеме подключения мегаомметра, а также снимаем заземление. Данная процедура проводится при каждом новом замере, поскольку близлежащие элементы могут накапливать заряд, вносить погрешность в показания и представлять опасность для жизни. Установка и снятие щупов производится за изолированные ручки в резиновых перчатках
Обращаем ваше внимание на то, что изолирующий слой кабеля перед проверкой сопротивления нужно очистить от пыли и грязи. Проверяем изоляцию вводного кабеля между фазами А-В, В-С, С-А, А-PEN, B-PEN, C-PEN
Результаты заносим в протокол измерений.
Отключаем все автоматы, УЗО, отключаем лампы и светильники освещения, отсоединяем нулевые провода от нулевой клеммы.
Производим замер каждой линии между фазой и N, фазой и PE, N и PE
Проверяем изоляцию вводного кабеля между фазами А-В, В-С, С-А, А-PEN, B-PEN, C-PEN. Результаты заносим в протокол измерений.
Отключаем все автоматы, УЗО, отключаем лампы и светильники освещения, отсоединяем нулевые провода от нулевой клеммы.
Производим замер каждой линии между фазой и N, фазой и PE, N и PE
Результаты вносим в протокол измерений.
В случае обнаружения дефекта разбираем измеряемую часть на составные элементы, ищем неисправность и устраняем.
По окончании испытания переносным заземлением снимаем остаточный заряд с объекта, путем кратковременного замыкания, и самого измерительного прибора, разряжая щупы между собой. Вот по такой инструкции необходимо пользоваться мегаомметром при замерах сопротивления изоляции кабельных и других линий. Чтобы вам было более понятна информация, ниже мы предоставили видео, в которых наглядно демонстрируется порядок измерений при работе с определенными моделями приборов.
Измерение изоляции на линиях
При подготовке к измерениям кабельных линий необходимо удалить из всех мест, где возможен доступ к проводникам, посторонних людей и животных. Вывесить предупреждающие таблички и поставить дежурных.
Линия должна быть полностью обесточена и отключена от всех нагрузок: автоматов, УЗО, вставок, должны быть вынуты все вилки из розеток и т.п. иначе померить сопротивление изоляции кабеля окажется невозможным, а некоторые приборы, оказавшиеся в нагрузке, могут быть повреждены.
Выбрав цепь для измерения сначала на некоторое время закорачивают ее проводники на землю или корпус (если уже известно, что сопротивление заземления корпуса в норме). Это требуется для снятия остаточных зарядов и точности измерений.
Измерительный прибор (мегаомметр) надежно подключается к выбранным точкам, между которыми испытывается изоляция. Экраны, оплетки и корпуса подключаются к клемме «Э». Изоляционный материал проводов мегаомметра должен быть целым по всей их длине.
Нажимают кнопку «Пуск» и в линию подается напряжение. Через 15 секунд автоматически делается первый отсчет сопротивления изоляции. Еще через 45 делается второй. Прибор рассчитывает коэффициент абсорбции. Это отношение второго отсчета к первому. Коэффициент абсорбции показывает меру влажности изоляции.
Коэффициент поляризации измеряют в течении 600 секунд. Это третий отсчет. Отношение третьего отсчета ко второму является коэффициентом поляризации. Это мера качества изоляции.
Проведенный измерительный процесс запоминается в мегаомметре и все данные можно вывести на дисплей или сохранить в памяти (это зависит от марки прибора).
Мегаомметр отключают, при помощи изолированных штанг и специального проводника разряжают линейные проводники по цепи измерения и на землю. Действия повторяют для всех необходимых цепей.
Обмотка электродвигателя: лучшие схемы соединения и подключения. Инструкция как сделать и прозвонить обмотку своими руками
Электрический двигатель постоянно работает на больших мощностях, поэтому неудивительно, что механизм часто выходит из строя. Больше всего страдает так называемая обмотка — расположенная в пазах и соединенная на концах заворачивающими кольцами медная, алюминиевая или бронзовая проволока.
При скачках напряжения, гидравлических ударах, перегревах из-за превышения допустимой нагрузки изоляция на обмоточном слое нарушается, а происходящее замыкание плавит металлические стержни.
А вся необходимая для этих действий информация — вплоть до пошаговой инструкции — представлена ниже.
Какой должна быть намотка
Обмотка — это кусок проводника, зафиксированный кольцами в корпусе двигателя. Ее установка требует соблюдения ряда условий:
- Проволока однородная на всем покрываемом участке;
- Форма и площадь сечения проводника соответствуют друг другу;
- Поверх наносится слой изоляции (лака);
- Соединение должно обеспечивать надежный контакт.
Если хоть одно из требований нарушено, то происходящие в двигателе процессы работают на износ, теряя мощность, обороты и ломаясь.
В большинстве случаев схема соединения обмоток двигателя представлена в виде звезды или треугольника, однако существуют и другие варианты. Концы проводников подключают на специальные внешние колодки с клеммами, редко соединения наблюдаются внутри корпуса.
Возможные неполадки
Обмотка достаточно хрупкий элемент мотора, поэтому его нестабильная работа может вылиться во многие неисправности:
- Обрыв провода и прекращение передачи тока;
- Короткое замыкание из-за поврежденной изоляции;
- Замыкание между отдельными витками, их самостоятельное «отключение» от системы;
- Повреждение изоляции.
Как определить неисправность
На представленных фото обмотки электродвигателей видно, что нередко поломку можно заметить невооруженным взглядом: провода плавятся, чернеют, присутствует влага, запах гари, сломанные детали. В случае обнаружения неприятных признаков сомнения о необходимом ремонте отпадают, а движок отправляется в ремонтную мастерскую.
Помимо осмотра существуют и другие способы, как проверить обмотку электродвигателя, если отсутствуют внешние «симптомы». Для этого требуется специальный прибор, который в домашних условиях можно заменить обычным мультиметром. К примеру, сообщить о проблемах с обмоткой может следующее:
Сравнить токи на фазах двигателя под нагрузкой (если механизм исправен, то значения будут одинаковыми).
Измерить показатели на различных значениях тока на каждом участке с обмоткой, занести сведения в таблицу или представить в виде графика. Сравнить данные, которые в нормальном режиме не должны иметь сильные отклонения от единой схемы.
Метод с шариком
- Подключить симметричное напряжение от трех фаз с низким номинальным током.
- Присоединить к каждой фазе понижающий трансформатор, имеющие одинаковые рабочие значения.
- Подать напряжение (и ни в коем случае не допустить превышения токовой нагрузки!).
- Одновременно ввести в созданное магнитное поле небольшой стальной шарик (диаметром 1-3 см).
- Проследить за совершаемыми предметом действиями: если шарик крутится синхронно — все исправно, если остановился — в этом месте замыкание.
Как произвести обмотку
Пошаговая инструкция для обмотки двигателя выглядит следующим образом:
- Произвести осмотр механизма по представленным выше схемам, выявить проблемные участки, наметить фронт работы.
- Приготовить расходные материалы (подходящий вид проволоки, изоляции и соединяющей пропитки).
- Подготовить к работе кантователь (станок для намотки).
- Надежно зафиксировать на машине стартер движка.
- Произвести соответствующую намотку.
- Густо обработать всю поверхность пропиточным средством.
- Установить изоляционный слой.
- Пропитать изоляцию.
- Высушить устройство в специальном сушильном шкафу.
- Проверить качество произведенной обмотки.
Обмотка электродвижка — это важный элемент системы, обеспечивающий непрерывную и равномерную подачу тока от стартера до всех остальных частей мотора. Ее повреждение ставит под угрозу всю работоспособность устройства, а несвоевременный ремонт способен и вовсе погубить механизм.
Регулярная диагностика позволит сразу определить неполадку, устранить ее, тем самым повысив срок службы двигателя.
ТРЕБОВАНИЯ ОХРАНЫ ТРУДА ВО ВРЕМЯ РАБОТЫ
3.1. Измерения мегаомметром в процессе эксплуатации разрешается выполнять обученным работникам из числа электротехнического персонала. 3.2. В электроустановках напряжением выше 1000 В измерения должны производиться по наряду, в электроустановках напряжением до 1000 В – по распоряжению. 3.3. В тех случаях, когда измерения мегаомметром входят в содержание работ, оговаривать эти измерения в наряде или распоряжении не требуется. 3.4. Измерять сопротивление изоляции мегаомметром может работник, имеющий группу III. 3.5. Измерение сопротивления изоляции мегаомметром должно осуществляться на отключенных токоведущих частях, с которых снят заряд путем предварительного их заземления. 3.6. Заземление с токоведущих частей следует снимать только после подключения мегаомметра. 3.7. При измерении мегаомметром сопротивления изоляции токоведущих частей соединительные провода следует присоединять к ним с помощью изолирующих держателей (штанг). 3.8. В электроустановках напряжением выше 1000 В, кроме того, следует пользоваться диэлектрическими перчатками. 3.9. При работе с мегаомметром прикасаться к токоведущим частям, к которым он присоединен, не разрешается. 3.10. После окончания работы следует снять с токоведущих частей остаточный заряд путем их кратковременного заземления. 3.11. Работать мегаомметром с приставных лестниц запрещается; для выполнения работ на высоте следует использовать прочные стремянки или подмости. 3.12. Работать мегаомметром, не защищенным от воздействия капель и брызг, в условиях их воздействия, а также на открытых площадках во время дождя или снегопада запрещается. 3.13. Не следует оставлять без надзора мегаомметр, присоединенный к токоведущим частям, а также передавать его лицам, не имеющим права с ним работать. 3.14. При переносе мегаомметрома с одного рабочего места на другое, а также при перерыве в работе и ее окончании мегаомметр должен быть отсоединен от токоведущих частей.
Как замерить сопротивление изоляции мегаомметром ЭСО
Первым делом необходимо правильно подключить измерительные провода к самому устройству. На данном этапе могут возникнуть вопросы. Это происходит из за того, что на панели подключения есть четыре отверстия (хотя встречается и три). Рассмотрим их подробнее слева-направо:
- “Минус” – сюда одинарный конец измерительного провода
- “Rx” – сюда второй конец двойного провода
- Данное отверстие в описываемой модели мной не опознано. Однако в ЭСО210/2 сюда перебрасывается провод с Rx при измерениях на пределе 0-5 МОм (отверстие подписано 0,1Rx).
- “Э” – экран; сюда вставляется штырь двойного провода. А нужен он для устранения влияния тока утечки на измерения. Используется при измерении между фазами.
Подача напряжения осуществляется при нажатии кнопки “сеть”. Провод питания подключается в нижней части прибора. Напряжение питания составляет 220В. Берем от розетки или, если она далеко, от удлинителя. Порой кроме компактного мегаомметра надо брать с собой на объект и удлинитель. Хотя, можно и одолжить у местных.
Перед началом измерений надо проверить исправность измерительных проводов, необходимо проверить их целостность. Для этого надо подключить провода и далее:
- При соединенных проводах сопротивление изоляции должно быть равно нулю
- При разведенных проводах значение Rx должно быть максимально возможным (говорим, бесконечность – сопротивление воздуха бесконечно, проводимость равна нулю)
- Если бесконечность при замкнутых, значит провод обломан и надо его заменить
- Если ноль при разведенных, значит либо они касаются, либо внутри прибора пробой или другая неисправность (не встречал такую ситуацию)
Лично я испытывал следующее оборудование мегаомметром: кабель (жилы, оболочка), турбогенератор (статор, ротор, подстуловая, патрубков), трансформатор, шины, электродвигатель, релейные цепи, трансформаторы тока и напряжения.
Таблица пределов измерения мегаомметров ЭСО
Разные модели мегаомметров ЭСО отличаются:
- регулируемыми пределами измерений (разные шкалы для разных величин измеряемого сопротивления изоляции )
- подаваемым напряжением постоянного тока (100, 250, 500, 1000, 2500 В)
- а также способом подачи напряжения (либо просто нажатие кнопки, либо вращение ручки генератора со скоростью 120-144 об/мин, о чем говорит наличие буквы Г в названии модели, ну и ручки собственно).
Характеристики мегаомметров ЭСО210
Основными элементами прибора являются: генератор или трансформатор, преобразователь и электронный измеритель. Электронный измеритель в моделях ЭСО210/1(Г) и ЭСО210/3(Г) выполнен на двух логарифмических усилителях. А в моделях ЭСО210/2(Г) – на двух логарифмических усилителях и повторителе напряжения на операционном усилителе – но эта информация, скорее всего, мало кому пригодится.
Также стоит отметить, что при использовании прибора рекомендуется использовать прерывистый характер работы – одну минуту измерение, две минуты перерыв.
Класс точности прибора 2,5, относительная погрешность 15% от измерененного сопротивления изоляции. То есть намерили 100МОм, а на самом деле это будет сто плюс минус пятнадцать мегаомм. Но и это не точно, так как существуют и другие влияющие факторы – это подробно описано в руководстве мегаомметра по экспуатации…
Как не запутаться в шкалах стрелочного мегаомметра ЭСО210
При работе с данным прибором чаще всего путаются какие концы куда вставлять, а также не сразу ориентируются на какую шкалу смотреть. Но с опытом глаз наметывается и трудностей не возникает.
У первой шкалы нуль справа, у второй и второй умножить на десять нули слева. Не путайте никогда. Нижняя черная шкала, как легко догадаться используется при измерении напряжения, и судя по надписи – как постоянного, так и переменного.
Возможно неопытного юнца испугает логарифмическая шкала, но бояться не стоит. Главное не торопиться и перепроверить несколько раз перед записью в протокол.
Например, первая шкала идет справа налево
… 0,1-0,2-0,3-0,4-0,5-0,6-0,7-0,8-0,9 …
1
… 2-3-4-5-6-7-8-9 …
10
… 20-30-40 …
50
К этому привыкаешь) На второй шкале максимум десять в четвертой – это 10 000 МОм или же 10 ГОм.
50
… 60-70-80-90 …
100
… 200-300-400-500-600-700-800-900 …
1000 (1к)
… 2к-3к-4к-5к-6к-7к-8к-9к …
10000 (10к)
А на “второй умножить на десять” – 100 000 МОм или 100 ГОм.
Некоторые пишут, но никогда не говорят, не ЭСО, а ЭС0. Расшифровки на просторах интернета я не нашел, но кажется мне, что правильно писать букву о, а не ноль. Если вдруг знаете аргументированный ответ как правильно, отпишитесь на почту.
Последние статьи
Самое популярное
На что обращать внимание при работах с мегаометром
Повышенное напряжение прибора
Выходной мощности генератора мегаомметра вполне достаточно для того, чтобы не только определить появление микротрещин в слое изоляции, но и получить серьезную электрическую травму. По этой причине правила безопасности разрешают пользоваться прибором только обученному и хорошо подготовленному персоналу, допущенному к работам в электроустановках под напряжением. А это минимум третья группа по ТБ. Повышенное напряжение прибора во время замера присутствует на испытуемой схеме, соединительных проводах и клеммах. Для защиты от него применяются специальные щупы, установленные на измерительные провода с усиленной поверхностью изоляции. На концах щупов предохранительными кольцами выделена запретная зона. К ней нельзя прикасаться открытыми частями тела. Иначе можно попасть под действие напряжения. Для манипуляций с измерительными щупами руками берутся за поверхность рабочей зоны. Во время измерений для подключения к схеме используют хорошо заизолированные зажимы типа «крокодил». Применять другие провода и щупы запрещено.
Во время проведения замера на всем испытуемом участке не должно быть людей. Особенно это актуально при замерах сопротивления изоляции длинномерных кабелей, протяженность которых может составить несколько километров.
Наведенное напряжение
Проходящая по проводам линий электропередач энергия обладает большим магнитным полем, которое, изменяясь по синусоидальному закону, наводит во всех металлических проводниках вторичную ЭДС и ток. Его величина на протяженных изделиях может достигать больших величин.
Этот фактор необходимо учитывать по двум причинам, связанным с:
2. безопасностью работающего персонала.
Первая причина заключается в том, что при сборке схемы для замера сопротивления изоляции через измерительный орган мегаомметра потечет ток неизвестной величины и направления, вызванный наводкой электрической энергии. Его значение добавится к показанию прибора от калиброванного напряжения генератора. В итоге две неизвестных величины тока суммируются произвольным образом и создают неразрешимую метрологическую задачу. Измерение сопротивлений электрических цепей, находящихся под любым напряжением, а не только под наведенным, поэтому вообще лишено смысла.
Вторая причина объясняется тем, что работы под наведенным напряжением могут привести к получению электрических травм и требуют строгого соблюдения правил безопасности.
Остаточный заряд
Когда генератор прибора выдает напряжение в измеряемую сеть, то между шиной электрооборудования или проводом линии и контуром земли создается разность потенциалов и образуется емкость, которая получает заряд. После разрыва цепи мегаомметра за счет отключения измерительного провода часть этого потенциала сохраняется: шина или провод обладают емкостным зарядом. Стоит только человеку прикоснуться к этому участку, как он получает электрическую травму от тока разряда через его тело. По этой причине необходимо принимать дополнительные меры безопасности и постоянно пользоваться переносным заземлением с изолированной рукояткой для безопасного снятия емкостного напряжения. Перед подключением мегаомметра к схеме, изоляция которой будет замеряться, всегда необходимо поверять отсутствие на ней напряжения или остаточного заряда. Делают это испытанным индикатором или поверенным вольтметром соответствующих номиналов. После выполнения каждого замера емкостной заряд снимается переносным заземлением с использованием изолирующей штанги и других дополнительных защитных средств.
Обычно мегаомметром необходимо выполнять много замеров. Например, чтобы сделать вывод о качестве изоляции контрольного десятижильного кабеля требуется проверить ее относительно земли и каждой жилы и между всеми жилами поочередно. При каждом замере необходимо пользоваться переносным заземлением. Для быстрой и безопасной работы один конец заземляющего проводника первоначально присоединяют к контуру заземления и оставляют в таком положении до полного завершения работ. Второй конец провода прикрепляют к изоляционной штанге и с ее помощью каждый раз накладывают заземление для снятия остаточного заряда.